Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(15): e2322563121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557192

RESUMO

Mammalian switch/sucrose nonfermentable (mSWI/SNF) ATPase degraders have been shown to be effective in enhancer-driven cancers by functioning to impede oncogenic transcription factor chromatin accessibility. Here, we developed AU-24118, an orally bioavailable proteolysis-targeting chimera (PROTAC) degrader of mSWI/SNF ATPases (SMARCA2 and SMARCA4) and PBRM1. AU-24118 demonstrated tumor regression in a model of castration-resistant prostate cancer (CRPC) which was further enhanced with combination enzalutamide treatment, a standard of care androgen receptor (AR) antagonist used in CRPC patients. Importantly, AU-24118 exhibited favorable pharmacokinetic profiles in preclinical analyses in mice and rats, and further toxicity testing in mice showed a favorable safety profile. As acquired resistance is common with targeted cancer therapeutics, experiments were designed to explore potential mechanisms of resistance that may arise with long-term mSWI/SNF ATPase PROTAC treatment. Prostate cancer cell lines exposed to long-term treatment with high doses of a mSWI/SNF ATPase degrader developed SMARCA4 bromodomain mutations and ABCB1 (ATP binding cassette subfamily B member 1) overexpression as acquired mechanisms of resistance. Intriguingly, while SMARCA4 mutations provided specific resistance to mSWI/SNF degraders, ABCB1 overexpression provided broader resistance to other potent PROTAC degraders targeting bromodomain-containing protein 4 and AR. The ABCB1 inhibitor, zosuquidar, reversed resistance to all three PROTAC degraders tested. Combined, these findings position mSWI/SNF degraders for clinical translation for patients with enhancer-driven cancers and define strategies to overcome resistance mechanisms that may arise.


Assuntos
Adenosina Trifosfatases , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Ratos , Camundongos , Animais , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Linhagem Celular , Cromatina , Mamíferos/genética , Antagonistas de Receptores de Andrógenos , DNA Helicases/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética
3.
bioRxiv ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38586029

RESUMO

Prostate cancer is an exemplar of an enhancer-binding transcription factor-driven disease. The androgen receptor (AR) enhanceosome complex comprised of chromatin and epigenetic coregulators assembles at enhancer elements to drive disease progression. The paralog lysine acetyltransferases p300 and CBP deposit histone marks that are associated with enhancer activation. Here, we demonstrate that p300/CBP are determinant cofactors of the active AR enhanceosome in prostate cancer. Histone H2B N-terminus multisite lysine acetylation (H2BNTac), which was exclusively reliant on p300/CBP catalytic function, marked active enhancers and was notably elevated in prostate cancer lesions relative to the adjacent benign epithelia. Degradation of p300/CBP rapidly depleted acetylation marks associated with the active AR enhanceosome, which was only partially phenocopied by inhibition of their reader bromodomains. Notably, H2BNTac was effectively abrogated only upon p300/CBP degradation, which led to a stronger suppression of p300/CBP-dependent oncogenic gene programs relative to bromodomain inhibition. In vivo experiments using a novel, orally active p300/CBP proteolysis targeting chimera (PROTAC) degrader (CBPD-409) showed that p300/CBP degradation potently inhibited tumor growth in preclinical models of castration-resistant prostate cancer and synergized with AR antagonists. While mouse p300/CBP orthologs were effectively degraded in host tissues, prolonged treatment with the PROTAC degrader was well tolerated with no significant signs of toxicity. Taken together, our study highlights the pivotal role of p300/CBP in maintaining the active AR enhanceosome and demonstrates how target degradation may have functionally distinct effects relative to target inhibition, thus supporting the development of p300/CBP degraders for the treatment of advanced prostate cancer.

5.
bioRxiv ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38464081

RESUMO

Mammalian switch/sucrose non-fermentable (mSWI/SNF) ATPase degraders have been shown to be effective in enhancer-driven cancers by functioning to impede oncogenic transcription factor chromatin accessibility. Here, we developed AU-24118, a first-in-class, orally bioavailable proteolysis targeting chimera (PROTAC) degrader of mSWI/SNF ATPases (SMARCA2 and SMARCA4) and PBRM1. AU-24118 demonstrated tumor regression in a model of castration-resistant prostate cancer (CRPC) which was further enhanced with combination enzalutamide treatment, a standard of care androgen receptor (AR) antagonist used in CRPC patients. Importantly, AU-24118 exhibited favorable pharmacokinetic profiles in preclinical analyses in mice and rats, and further toxicity testing in mice showed a favorable safety profile. As acquired resistance is common with targeted cancer therapeutics, experiments were designed to explore potential mechanisms of resistance that may arise with long-term mSWI/SNF ATPase PROTAC treatment. Prostate cancer cell lines exposed to long-term treatment with high doses of a mSWI/SNF ATPase degrader developed SMARCA4 bromodomain mutations and ABCB1 overexpression as acquired mechanisms of resistance. Intriguingly, while SMARCA4 mutations provided specific resistance to mSWI/SNF degraders, ABCB1 overexpression provided broader resistance to other potent PROTAC degraders targeting bromodomain-containing protein 4 (BRD4) and AR. The ABCB1 inhibitor, zosuquidar, reversed resistance to all three PROTAC degraders tested. Combined, these findings position mSWI/SNF degraders for clinical translation for patients with enhancer-driven cancers and define strategies to overcome resistance mechanisms that may arise.

6.
bioRxiv ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38464258

RESUMO

The modern armamentarium for cancer treatment includes immunotherapy and targeted therapy, such as protein kinase inhibitors. However, the mechanisms that allow cancer-targeting drugs to effectively mobilize dendritic cells (DCs) and affect immunotherapy are poorly understood. Here, we report that among shared gene targets of clinically relevant protein kinase inhibitors, high PIKFYVE expression was least predictive of complete response in patients who received immune checkpoint blockade (ICB). In immune cells, high PIKFYVE expression in DCs was associated with worse response to ICB. Genetic and pharmacological studies demonstrated that PIKfyve ablation enhanced DC function via selectively altering the alternate/non-canonical NF-κB pathway. Both loss of Pikfyve in DCs and treatment with apilimod, a potent and specific PIKfyve inhibitor, restrained tumor growth, enhanced DC-dependent T cell immunity, and potentiated ICB efficacy in tumor-bearing mouse models. Furthermore, the combination of a vaccine adjuvant and apilimod reduced tumor progression in vivo. Thus, PIKfyve negatively controls DCs, and PIKfyve inhibition has promise for cancer immunotherapy and vaccine treatment strategies.

7.
bioRxiv ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38328238

RESUMO

The POU2F3-POU2AF2/3 (OCA-T1/2) transcription factor complex is the master regulator of the tuft cell lineage and tuft cell-like small cell lung cancer (SCLC). Here, we found that the POU2F3 molecular subtype of SCLC (SCLC-P) exhibits an exquisite dependence on the activity of the mammalian switch/sucrose non-fermentable (mSWI/SNF) chromatin remodeling complex. SCLC-P cell lines were sensitive to nanomolar levels of a mSWI/SNF ATPase proteolysis targeting chimera (PROTAC) degrader when compared to other molecular subtypes of SCLC. POU2F3 and its cofactors were found to interact with components of the mSWI/SNF complex. The POU2F3 transcription factor complex was evicted from chromatin upon mSWI/SNF ATPase degradation, leading to attenuation of downstream oncogenic signaling in SCLC-P cells. A novel, orally bioavailable mSWI/SNF ATPase PROTAC degrader, AU-24118, demonstrated preferential efficacy in the SCLC-P relative to the SCLC-A subtype and significantly decreased tumor growth in preclinical models. AU-24118 did not alter normal tuft cell numbers in lung or colon, nor did it exhibit toxicity in mice. B cell malignancies which displayed a dependency on the POU2F1/2 cofactor, POU2AF1 (OCA-B), were also remarkably sensitive to mSWI/SNF ATPase degradation. Mechanistically, mSWI/SNF ATPase degrader treatment in multiple myeloma cells compacted chromatin, dislodged POU2AF1 and IRF4, and decreased IRF4 signaling. In a POU2AF1-dependent, disseminated murine model of multiple myeloma, AU-24118 enhanced survival compared to pomalidomide, an approved treatment for multiple myeloma. Taken together, our studies suggest that POU2F-POU2AF-driven malignancies have an intrinsic dependence on the mSWI/SNF complex, representing a therapeutic vulnerability.

8.
Horm Metab Res ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37956980

RESUMO

The aim of this study is to report the risk factors of severe statin induced liver injury (SILI). From the database of Shandong ADR Monitoring Center and Outpatients and inpatients in our hospital, SILI cases reported from 2013 to 2021 were extracted and screened. The diagnostic criteria of SILI, the inclusion and exclusion criteria of severe and general SILI were established separately. After the SILI cases were selected and confirmed, the socio-demographic and clinical characteristics were collected. Single factor chi-square test and multi-factor unconditional logistic regression analysis were used to analyze the influencing factors of severe SILI. From 1391 reported cases, 1211 met SILI diagnostic criteria, of which 157 were severe SILI and 964 were general SILI. Univariate analysis showed that age, drug combination, statin category were the influencing factors of severe SILI (p<0.1). Multivariate logistic analysis showed that drug combination and statin category were the influencing factors of severe SILI (p<0.05). Atorvastatin caused the most serious SILI, and its risk is 1.77 times higher than rosuvastatin. The serious SILI risk of drug combination was 2.08 times higher than statin alone. The patient with these factors should be monitored intensively during clinical treatment, to ensure their medication safety.

9.
Am J Surg Pathol ; 48(2): 163-173, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37994665

RESUMO

Birt-Hogg-Dubé (BHD) syndrome is associated with an increased risk of multifocal renal tumors, including hybrid oncocytic tumor (HOT) and chromophobe renal cell carcinoma (chRCC). HOT exhibits heterogenous histologic features overlapping with chRCC and benign renal oncocytoma, posing challenges in diagnosis of HOT and renal tumor entities resembling HOT. In this study, we performed integrative analysis of bulk and single-cell RNA sequencing data from renal tumors and normal kidney tissues, and nominated candidate biomarkers of HOT, L1CAM, and LINC01187 , which are also lineage-specific markers labeling the principal cell and intercalated cell lineages of the distal nephron, respectively. Our findings indicate the principal cell lineage marker L1CAM and intercalated cell lineage marker LINC01187 to be expressed mutually exclusively in a unique checkered pattern in BHD-associated HOTs, and these 2 lineage markers collectively capture the 2 distinct tumor epithelial populations seen to co-exist morphologically in HOTs. We further confirmed that the unique checkered expression pattern of L1CAM and LINC01187 distinguished HOT from chRCC, renal oncocytoma, and other major and rare renal cell carcinoma subtypes. We also characterized the histopathologic features and immunophenotypic features of oncocytosis in the background kidney of patients with BHD, as well as the intertumor and intratumor heterogeneity seen within HOT. We suggest that L1CAM and LINC01187 can serve as stand-alone diagnostic markers or as a panel for the diagnosis of HOT. These lineage markers will inform future studies on the evolution and interaction between the 2 transcriptionally distinct tumor epithelial populations in such tumors.


Assuntos
Adenoma Oxífilo , Síndrome de Birt-Hogg-Dubé , Carcinoma de Células Renais , Neoplasias Renais , Molécula L1 de Adesão de Célula Nervosa , Humanos , Síndrome de Birt-Hogg-Dubé/genética , Cidades , Neoplasias Renais/patologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia
10.
Acta Cir Bras ; 38: e386223, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38055397

RESUMO

PURPOSE: Over-activation of nuclear factor kappa B (NF-κB) was proven to be involved in the pathogenesis of preeclampsia. However, its regulation mechanism is not clear yet. This paper explored the role of WD repeat domain 5 (WDR5) in the development of late-onset preeclampsia and its relationship with NF-κB. METHODS: WDR5 expression was detected in normal placentas and placentas from late-onset preeclampsia patients. CCK-8 and colony formation assays were conducted to appraise the proliferative ability of trophoblast. Migration and invasion were observed by wound healing and transwell assays. The interaction between WDR5 and NF-κB inhibitor I-kappa-B-alpha (IkBa) was verified by Co-immunoprecipitation analysis. Immunofluorescence was used to analyze the activation of NF-κB. Finally, we tested the role of WDR5 using the mice late-onset preeclampsia model. RESULTS: WDR5 was highly expressed in the placentas of late-onset preeclampsia patients. WDR5 overexpression suppressed cell proliferation, migration, and invasion in trophoblast. WDR5 could interact with IkBa to activate NF-κB. Knockdown of NF-κB counteracted the anti-proliferative and anti-metastatic effects of WDR5 overexpression in trophoblast. In-vivo studies suggested that targeting WDR5 combated late-onset preeclampsia development. CONCLUSIONS: Our finding provides new insights into the role of WDR5 in late-onset preeclampsia development.


Assuntos
NF-kappa B , Pré-Eclâmpsia , Gravidez , Camundongos , Feminino , Animais , Humanos , NF-kappa B/metabolismo , Pré-Eclâmpsia/metabolismo , Repetições WD40 , Placenta , Trofoblastos/metabolismo , Proliferação de Células , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
11.
Proc Natl Acad Sci U S A ; 120(49): e2314416120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38011559

RESUMO

Despite the remarkable clinical success of immunotherapies in a subset of cancer patients, many fail to respond to treatment and exhibit resistance. Here, we found that genetic or pharmacologic inhibition of the lipid kinase PIKfyve, a regulator of autophagic flux and lysosomal biogenesis, upregulated surface expression of major histocompatibility complex class I (MHC-I) in cancer cells via impairing autophagic flux, resulting in enhanced cancer cell killing mediated by CD8+ T cells. Genetic depletion or pharmacologic inhibition of PIKfyve elevated tumor-specific MHC-I surface expression, increased intratumoral functional CD8+ T cells, and slowed tumor progression in multiple syngeneic mouse models. Importantly, enhanced antitumor responses by Pikfyve-depletion were CD8+ T cell- and MHC-I-dependent, as CD8+ T cell depletion or B2m knockout rescued tumor growth. Furthermore, PIKfyve inhibition improved response to immune checkpoint blockade (ICB), adoptive cell therapy, and a therapeutic vaccine. High expression of PIKFYVE was also predictive of poor response to ICB and prognostic of poor survival in ICB-treated cohorts. Collectively, our findings show that targeting PIKfyve enhances immunotherapies by elevating surface expression of MHC-I in cancer cells, and PIKfyve inhibitors have potential as agents to increase immunotherapy response in cancer patients.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Camundongos , Animais , Humanos , Genes MHC Classe I , Antígenos de Histocompatibilidade Classe I , Imunoterapia/métodos , Lipídeos , Neoplasias/genética , Neoplasias/terapia
12.
Cell Div ; 18(1): 17, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872600

RESUMO

BACKGROUND: LncRNAs have been shown to be involved in and control the biological processes of multiple diseases, including preeclampsia (PE). The impairment of trophoblast cell proliferation is recognized as a significant anomaly contributing to the development of PE. LncRNA FEZF1-AS1 was found downregulated in placental tissues of PE patients. However, the precise regulatory mechanism of FEZF1-AS1 in placental trophoblast proliferation and apoptosis remains unclear. RESULTS: In this study, we conducted an investigation into the expression levels of FEZF1-AS1 and NOC2L in placental tissues obtained from patients diagnosed with PE. Subsequently, we employed CCK-8 and EdU assays to quantify cell proliferation, while TUNEL staining and western blot for apoptosis-related protein detection to assess apoptosis. Furthermore, the interactions between FEZF1-AS1 and ELAVL1, as well as NOC2L and ELAVL1, were confirmed through the implementation of RIP and RNA pull-down assays. We found a downregulation of lncRNA FEZF1-AS1 and NOC2L in placental tissues of PE patients. Overexpression of FEZF1-AS1 or NOC2L resulted in increased cell proliferation and inhibition of apoptosis, whereas knockdown of FEZF1-AS1 or NOC2L had the opposite effect. In addition, lncRNA FEZF1-AS1 stabilized NOC2L mRNA expression by interacting with ELAVL1. Moreover, partial reversal of the effects of FEZF1-AS1 overexpression on cell proliferation and apoptosis was observed upon suppression of ELAVL1 or NOC2L. CONCLUSIONS: PE related lncRNA FEZF1-AS1 could regulate apoptosis and proliferation of placental trophoblast cells through the ELAVL1/NOC2L axis.

14.
Proc Natl Acad Sci U S A ; 120(30): e2221809120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37459541

RESUMO

Early in the COVID-19 pandemic, data suggested that males had a higher risk of developing severe disease and that androgen deprivation therapy might be associated with protection. Combined with the fact that TMPRSS2 (transmembrane serine protease 2), a host entry factor for the SARS-CoV-2 virus, was a well-known androgen-regulated gene, this led to an upsurge of research investigating androgen receptor (AR)-targeting drugs. Proxalutamide, an AR antagonist, was shown in initial clinical studies to benefit COVID-19 patients; however, further validation is needed as one study was retracted. Due to continued interest in proxalutamide, which is in phase 3 trials, we examined its ability to impact SARS-CoV-2 infection and downstream inflammatory responses. Proxalutamide exerted similar effects as enzalutamide, an AR antagonist prescribed for advanced prostate cancer, in decreasing AR signaling and expression of TMPRSS2 and angiotensin-converting enzyme 2 (ACE2), the SARS-CoV-2 receptor. However, proxalutamide led to degradation of AR protein, which was not observed with enzalutamide. Proxalutamide inhibited SARS-CoV-2 infection with an IC50 value of 97 nM, compared to 281 nM for enzalutamide. Importantly, proxalutamide inhibited infection by multiple SARS-CoV-2 variants and synergized with remdesivir. Proxalutamide protected against cell death in response to tumor necrosis factor alpha and interferon gamma, and overall survival of mice was increased with proxalutamide treatment prior to cytokine exposure. Mechanistically, we found that proxalutamide increased levels of NRF2, an essential transcription factor that mediates antioxidant responses, and decreased lung inflammation. These data provide compelling evidence that proxalutamide can prevent SARS-CoV-2 infection and cytokine-induced lung damage, suggesting that promising clinical data may emerge from ongoing phase 3 trials.


Assuntos
COVID-19 , Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , SARS-CoV-2/metabolismo , Androgênios , Antagonistas de Androgênios/uso terapêutico , Pandemias , Peptidil Dipeptidase A/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Interferon gama/uso terapêutico
15.
Chem Asian J ; 18(2): e202201139, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36507569

RESUMO

Pt is usually used as cocatalyst for g-C3 N4 to produce H2 by photocatalytic splitting of water. However, the photocatalytic performance is still limited by the fast recombination of photo-generated electrons and holes, as well as the poor absorption of visible light. In this work, MoO2 /g-C3 N4 composites were prepared, in which MoO2 synergetic with Pt photo-deposited during H2 evolution reaction worked as unilateral dual cocatalyst to improve the photocatalytic activity. Within 4 hours of irradiation, the hydrogen production rate of MoO2 -Pt dual cocatalyst modified g-C3 N4 reached 3804.89 µmol/g/h, which was 120.18 times of that of pure g-C3 N4 (GCN, 31.66 µmol/g/h), 10.98 times of that of MoO2 modified g-C3 N4 (346.39 µmol/g/h), and 9.18 times of that of Pt modified g-C3 N4 (413.64 µmol/g/h). Characterization results demonstrate that the deficient MoO2 not only promoted visible light absorption of g-C3 N4 , but also worked as a "electron pool" to capture and transfer electrons to Pt.


Assuntos
Elétrons , Hidrogênio , Luz , Água
16.
J Obstet Gynaecol Res ; 49(1): 141-153, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36324256

RESUMO

BACKGROUND: Decreased proliferation and invasion of trophoblast were proven to be involved in the pathogenesis of preeclampsia (PE). However, the regulatory network has not been clarified yet. This study aimed to explore the role of miR-101-3p in the progression of PE. METHODS: miR-101-3p expression in placentas of pregnant women with or without PE was analyzed by real-time quantitative PCR (RT-qPCR). Trophoblastic HTR-8/SVneo and HPT-8 cell lines were cultured and underwent hypoxia/reoxygenation (H/R) treatment to mimic PE in vitro. Cell proliferation and invasion were analyzed in gain-of and loss-of-function assays. Finally, we undertook in vivo studies to explore effects of miR-101-3p in the PE model. RESULTS: Compared to placentas from patients without PE, miR-101-3p expressed significantly higher in placentas from PE patients, and its level was positively correlated with the severity of patients. In vitro studies found that overexpression of miR-101-3p significantly suppressed cell proliferation and invasion, while knockdown of miR-101-3p reversed the impacts of H/R treatment. Further research showed that the expression of WD repeat domain 5 (WDR5) was significantly lower in placentas from patients with PE, and its level was negatively associated with the severity of patients. In vitro and in vivo studies confirmed that miR-101-3p promoted PE progression through the regulation of WD WDR5 expression. CONCLUSION: Increased expression of miR-101-3p in placenta contributes to the development of PE by suppressing WDR5-mediated proliferation and invasion of trophoblast.


Assuntos
MicroRNAs , Pré-Eclâmpsia , Humanos , Gravidez , Feminino , Trofoblastos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Placenta/metabolismo , Hipóxia/metabolismo , Proliferação de Células/genética , Movimento Celular , Peptídeos e Proteínas de Sinalização Intracelular
17.
Acta cir. bras ; 38: e386223, 2023. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1527603

RESUMO

Purpose: Over-activation of nuclear factor kappa B (NF-κB) was proven to be involved in the pathogenesis of preeclampsia. However, its regulation mechanism is not clear yet. This paper explored the role of WD repeat domain 5 (WDR5) in the development of late-onset preeclampsia and its relationship with NF-κB. Methods: WDR5 expression was detected in normal placentas and placentas from late-onset preeclampsia patients. CCK-8 and colony formation assays were conducted to appraise the proliferative ability of trophoblast. Migration and invasion were observed by wound healing and transwell assays. The interaction between WDR5 and NF-κB inhibitor I-kappa-B-alpha (IkBa) was verified by Co-immunoprecipitation analysis. Immunofluorescence was used to analyze the activation of NF-κB. Finally, we tested the role of WDR5 using the mice late-onset preeclampsia model. Results: WDR5 was highly expressed in the placentas of late-onset preeclampsia patients. WDR5 overexpression suppressed cell proliferation, migration, and invasion in trophoblast. WDR5 could interact with IkBa to activate NF-κB. Knockdown of NF-κB counteracted the anti-proliferative and anti-metastatic effects of WDR5 overexpression in trophoblast. In-vivo studies suggested that targeting WDR5 combated late-onset preeclampsia development. Conclusions: Our finding provides new insights into the role of WDR5 in late-onset preeclampsia development.


Assuntos
Pré-Eclâmpsia , Trofoblastos , NF-kappa B
18.
Nature ; 601(7893): 434-439, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34937944

RESUMO

The switch/sucrose non-fermentable (SWI/SNF) complex has a crucial role in chromatin remodelling1 and is altered in over 20% of cancers2,3. Here we developed a proteolysis-targeting chimera (PROTAC) degrader of the SWI/SNF ATPase subunits, SMARCA2 and SMARCA4, called AU-15330. Androgen receptor (AR)+ forkhead box A1 (FOXA1)+ prostate cancer cells are exquisitely sensitive to dual SMARCA2 and SMARCA4 degradation relative to normal and other cancer cell lines. SWI/SNF ATPase degradation rapidly compacts cis-regulatory elements bound by transcription factors that drive prostate cancer cell proliferation, namely AR, FOXA1, ERG and MYC, which dislodges them from chromatin, disables their core enhancer circuitry, and abolishes the downstream oncogenic gene programs. SWI/SNF ATPase degradation also disrupts super-enhancer and promoter looping interactions that wire supra-physiologic expression of the AR, FOXA1 and MYC oncogenes themselves. AU-15330 induces potent inhibition of tumour growth in xenograft models of prostate cancer and synergizes with the AR antagonist enzalutamide, even inducing disease remission in castration-resistant prostate cancer (CRPC) models without toxicity. Thus, impeding SWI/SNF-mediated enhancer accessibility represents a promising therapeutic approach for enhancer-addicted cancers.


Assuntos
Adenosina Trifosfatases , DNA Helicases , Proteínas Nucleares , Neoplasias da Próstata , Fatores de Transcrição , Adenosina Trifosfatases/metabolismo , Animais , Benzamidas , DNA Helicases/genética , Elementos Facilitadores Genéticos , Genes myc , Fator 3-alfa Nuclear de Hepatócito , Humanos , Masculino , Nitrilas , Proteínas Nucleares/genética , Oncogenes , Feniltioidantoína , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Receptores Androgênicos , Fatores de Transcrição/genética , Regulador Transcricional ERG , Ensaios Antitumorais Modelo de Xenoenxerto
19.
J Invest Dermatol ; 142(3 Pt A): 641-652, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34474081

RESUMO

Merkel cell carcinoma (MCC) is an aggressive cutaneous neuroendocrine carcinoma that is classified as Merkel cell polyomavirus-positive (virus positive [VP]) or Merkel cell polyomavirus-negative (virus negative [VN]). Epigenetic changes, such as DNA methylation, can alter gene expression and influence cancer progression. However, patterns of DNA methylation and the therapeutic efficacy of hypomethylating agents have not been fully explored in MCC. We characterized genome-wide DNA methylation in 16 MCC cell lines from both molecular subclasses in comparison with other cancer types and found that the overall profile of MCC is similar to that of small-cell lung carcinoma. Comparison of VP MCC with VN MCC revealed 2,260 differentially methylated positions. The hypomethylating agent decitabine upregulated the expression of antigen-presenting machinery in MCC cell lines and stimulated membrane expression of HLA-A in VP and VN MCC xenograft tumors. Decitabine also induced prominent caspase- and large T antigen‒independent cell death in VP MCC, whereas VN MCC cell lines displayed decreased proliferation without increased cell death. In mouse xenografts, decitabine significantly decreased the size of VP tumors but not that of VN tumors. Our findings indicate that viral status predicts genomic methylation patterns in MCC and that decitabine may be therapeutically effective against MCC through antiproliferative effects, cell death, and increased immune recognition.


Assuntos
Carcinoma de Célula de Merkel , Poliomavírus das Células de Merkel , Infecções por Polyomavirus , Neoplasias Cutâneas , Infecções Tumorais por Vírus , Animais , Carcinoma de Célula de Merkel/tratamento farmacológico , Carcinoma de Célula de Merkel/genética , Carcinoma de Célula de Merkel/patologia , Metilação de DNA , Decitabina/farmacologia , Decitabina/uso terapêutico , Humanos , Poliomavírus das Células de Merkel/genética , Camundongos , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Infecções Tumorais por Vírus/genética
20.
Nat Cancer ; 2: 978-993, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34738088

RESUMO

Multi-tyrosine kinase inhibitors (MTKIs) have thus far had limited success in the treatment of castration-resistant prostate cancer (CRPC). Here, we report a phase I-cleared orally bioavailable MTKI, ESK981, with a novel autophagy inhibitory property that decreased tumor growth in diverse preclinical models of CRPC. The anti-tumor activity of ESK981 was maximized in immunocompetent tumor environments where it upregulated CXCL10 expression through the interferon gamma pathway and promoted functional T cell infiltration, which resulted in enhanced therapeutic response to immune checkpoint blockade. Mechanistically, we identify the lipid kinase PIKfyve as the direct target of ESK981. PIKfyve-knockdown recapitulated ESK981's anti-tumor activity and enhanced the therapeutic benefit of immune checkpoint blockade. Our study reveals that targeting PIKfyve via ESK981 turns tumors from cold into hot through inhibition of autophagy, which may prime the tumor immune microenvironment in advanced prostate cancer patients and be an effective treatment strategy alone or in combination with immunotherapies.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias de Próstata Resistentes à Castração , Autofagia , Humanos , Imunoterapia/métodos , Masculino , Fosfatidilinositol 3-Quinases/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...